Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

  • Link : https://arxiv.org/abs/1703.10593

Abstract

Image-to-Image translation ๊ณผ์ œ์˜ ๋ชฉํ‘œ๋Š” pair-image ๋ฐ์ดํ„ฐ์…‹์„ ๊ฐ€์ง€๊ณ  input image์™€ output image ์‚ฌ์ด์˜ mapping์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

ํ•˜์ง€๋งŒ, ๋งŽ์€ task์—์„œ ์Œ์„ ์ด๋ฃจ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌํ•˜๊ธฐ๋Š” ์‰ฝ์ง€ ์•Š๋‹ค.

๋”ฐ๋ผ์„œ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” pair๊ฐ€ ์—†๋Š” ์ด๋ฏธ์ง€ ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด source domain $X$์—์„œ target domain $Y$๋กœ ์ด๋ฏธ์ง€๋ฅผ translateํ•˜๋Š” ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค.

์—ฐ๊ตฌ์˜ ๋ชฉํ‘œ๋Š” adversarial loss๋ฅผ ์ด์šฉํ•˜์—ฌ $G$๊ฐ€ ์ƒ์„ฑํ•œ ์ด๋ฏธ์ง€ $G(X)$์˜ ๋ถ„ํฌ์™€ $Y$์˜ ์ด๋ฏธ์ง€๊ฐ€ ๊ตฌ๋ถ„๋˜์ง€ ์•Š๋„๋ก, mapping $G:X\rightarrow Y$๋ฅผ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

ํ•˜์ง€๋งŒ adversarial loss๋งŒ์„ ์ด์šฉํ•œ mapping ํ•™์Šต์€ ์ œ์•ฝ์ด ๋ถ€์กฑํ•˜๋‹ค(under-constrained). ๋”ฐ๋ผ์„œ, cycle consistency loss๋ฅผ ๋„์ž…ํ•˜์—ฌ mapping $G$์™€ inverse mapping $F : Y \rightarrow X$๊ฐ€ ์„œ๋กœ ์ƒํ˜ธ ๋ณด์™„์ ์œผ๋กœ ์ž‘๋™ํ•˜๋„๋ก ์ฆ‰, $F(G(x))\approx x \ (and \ vice\ versa)$๋˜๋„๋ก ํ•œ๋‹ค.

$F(G(x))\approx x$์˜ ์˜๋ฏธ๋Š” ๋’ค์— ์ž์„ธํžˆ ์„ค๋ช…ํ•˜๊ฒŸ๋‹ค.

๊ทธ ๊ฒฐ๊ณผ paired training data๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์•„๋„, collection style transfer, object transfiguration(๊ฐ์ฒด ๋ณ€ํ™˜), season transfer, phto enhancement ๋“ฑ๊ณผ ๊ฐ™์€ ๋ฌธ์ œ์—์„œ qualitativeํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์คฌ๋‹ค.

1. Introduction

๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‚ฌ์ง„์ด ์žˆ๋‹ค๊ณ  ํ•ด๋ณด์ž.

image

โ€˜๋ฐ˜ ๊ณ ํ๊ฐ€ ์ด ์‚ฌ์ง„๊ณผ ๊ฐ™์€ ํ’๊ฒฝ์„ ๋ณด๊ณ  ๊ทธ๋ฆฐ๋‹ค๋ฉด ์–ด๋–จ๊นŒ?โ€™

๋ฐ˜ ๊ณ ํ๊ฐ€ ์ง์ ‘ ์ด ํ’๊ฒฝ์„ ๊ทธ๋ฆฐ ๊ทธ๋ฆผ์€ ์—†๋”๋ผ๋„, ์šฐ๋ฆฌ๊ฐ€ ์•„๋Š” ๋ฐ˜ ๊ณ ํ์˜ ๊ทธ๋ฆผ ์Šคํƒ€์ผ๋“ค์„ ์ƒ๊ฐํ•ด๋ณผ ๋•Œ ์•„๋งˆ๋„ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ทธ๋ฆผ์ด ๋‚˜์˜ฌ๊ฑฐ๋ผ ์ƒ๊ฐํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๊ฝค ๊ทธ๋Ÿด์‚ฌํ•˜๋‹ค.

image

์ด ์—ฐ๊ตฌ์—์„œ๋„ ๊ฐ™์€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ๋ฐ˜ ๊ณ ํ๊ฐ€ ๊ทธ๋ฆฐ ๊ทธ๋ฆผ๋“ค์„ ๋ณด๊ณ  ๊ทธ ์Šคํƒ€์ผ์„ ์ƒ๊ฐํ•ด๋ณด๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ํ•œ ์ด๋ฏธ์ง€ ์ปฌ๋ ‰์…˜์˜ ํŠน์„ฑ(characteristics)์„ ํฌ์ฐฉํ•˜๊ณ , ์–ด๋– ํ•œ pair-image๋„ ์—†๋Š” ๋‹ค๋ฅธ ์ด๋ฏธ์ง€ ์ปฌ๋ ‰์…˜์— ๋ณ€ํ™˜์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค.

์ง€๊ธˆ๊ป Image-to-image translation ๋ฌธ์ œ๋Š” pair-image๊ฐ€ ์กด์žฌํ•˜๋Š” supervised ํ™˜๊ฒฝ์—์„œ ๊ฐ•๋ ฅํ•œ translate์„ ์ž๋ž‘ํ–ˆ๋‹ค. ํ•˜์ง€๋งŒ, pair-image ๋ฐ์ดํ„ฐ์…‹์„ ์ค€๋น„ํ•˜๋Š” ๊ฑด ๊ฝค๋‚˜ ์–ด๋ ต๋‹ค.

image

์œ„ ์‚ฌ์ง„์ฒ˜๋Ÿผ ์‚ด์ œ๋กœ ์กด์žฌํ•˜๋Š” ์ด๋ฏธ์ง€ ์Œ์„ ์ฐพ๊ธฐ๋Š” ์–ด๋ ค์šธ ๊ฒƒ์ด๊ณ , ์‹ฌ์ง€์–ด, ๊ฐ™์€ ํ’๊ฒฝ ์‚ฌ์ง„์„ Monet๋‚˜ Van Goah ์Šคํƒ€์ผ๋กœ ๊ทธ๋ ค์ง„ ๊ทธ๋ฆผ์„ ์ฐพ๋Š”๋‹ค๋Š” ๊ฒƒ์€ ๋ถˆ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋‹ค. Monet์™€ Van Goah๊ฐ€ ๊ทธ๋ฆฐ ๊ทธ๋ฆผ๋“ค์˜ ์›๋ž˜ ํ’๊ฒฝ ์‚ฌ์ง„๋“ค์„ ๊ทธ๋Œ€๋กœ ์ฐพ์•„๋‚ด์ง€ ์•Š๋Š”ํ•œ..

๊ทธ๋ž˜์„œ ์ด ์—ฐ๊ตฌ์—์„œ๋Š” paired input-output์ด ์•„๋‹Œ, domain $X$์™€ domain $Y$์— ๋Œ€ํ•ด, mapping $G : X \rightarrow Y$๋ฅผ ํ•™์Šต์‹œํ‚จ๋‹ค. $G$๋Š” $\hat{y}$์™€ $y$๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” adversary train์„ ํ†ตํ•ด output $\hat{y} = G(x), x \in X$๊ฐ€ $y \in Y$์˜ ์ด๋ฏธ์ง€์™€ ๊ตฌ๋ถ„์ด ๋˜์ง€ ์•Š๋„๋ก ํ•™์Šตํ•œ๋‹ค.

ํ•˜์ง€๋งŒ, input $x$์™€ output $y$๊ฐ€ ์˜๋ฏธ์žˆ๊ฒŒ paired๋˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด $X$๋ฅผ $Y$์— ๋งคํ•‘ํ•˜๋Š” ํ•จ์ˆ˜$G$๊ฐ€ ๋งค์šฐ ๋‹ค์–‘ํ•˜๊ฒŒ ์กด์žฌํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ฐ๊ฐ์˜ ๋ณ€ํ™˜ ํ•จ์ˆ˜๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ $X$๋ฅผ ์ด๋ฏธ์ง€ $Y$๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ตœ์ข…์ ์œผ๋กœ ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€๋“ค์˜ ๋ถ„ํฌ๋Š” ๊ฐ™์„ ์ˆ˜ ์žˆ๋‹ค.

๊ฒŒ๋‹ค๊ฐ€ mode collapse ๋ฌธ์ œ๋ฅผ ์ผ์œผ์ผœ, ๋ชจ๋“  ์ด๋ฏธ์ง€๊ฐ€ ๊ฐ™์€ output image๋กœ ๋งคํ•‘๋˜์–ด, ์ฆ‰ ๊ฐ™์€ ์ด๋ฏธ์ง€๋งŒ์„ ์ถœ๋ ฅํ•˜๋Š”, ์ตœ์ ํ™”์— ์‹คํŒจํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด ๋…ผ๋ฌธ์—์„œ๋Š” translation์ด โ€œcycle consistentโ€ ๋งŒ์กฑํ•ด์•ผํ•จ์„ ์•Œ์•„๋ƒˆ๋‹ค. Cycle consistent๋ž€ ์˜ˆ๋ฅผ๋“ค์–ด, ์˜์–ด๋กœ ๋œ ๋ฌธ์žฅ์„ ํ”„๋ž‘์Šค์–ด๋กœ ๋ฒˆ์—ญํ•˜๊ณ , ๋ฒˆ์—ญํ•œ ๋ฌธ์žฅ(French)์„ ๋‹ค์‹œ ์˜์–ด๋กœ ๋ฒˆ์—ญํ–ˆ์„ ๋•Œ ์›๋ž˜์˜ ์˜์–ด ๋ฌธ์žฅ์œผ๋กœ ๋Œ์•„์™€์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์ˆ˜ํ•™์ ์œผ๋กœ ํ‘œํ˜„ํ•˜์ž๋ฉด, translator $G : X\rightarrow Y$์™€ translator $F:Y\rightarrow X$๊ฐ€ ์žˆ๋‹ค๋ฉด, $G$์™€ $F$๋Š” ์—ญ์˜ ๊ด€๊ณ„์ด๋ฉฐ, ๋‘˜์˜ mappings๋Š” ์ผ๋Œ€์ผ ๋Œ€์‘(bijections)์ด์–ด์•ผ ํ•œ๋‹ค. ์ด ๋ฐฉ์‹์„ mapping $G$์™€ $F$๋ฅผ ํ›ˆ๋ จํ•˜๋Š”๋ฐ ์ ์šฉํ•˜๊ณ , cycle consistency loss๋ฅผ ์ถ”๊ฐ€ํ•œ๋‹ค. cycle consistency loss๋Š” $F(G(x)) \approx x$์™€ $G(F(y)) \approx y$๊ฐ€ ๋˜๋„๋ก ์กฐ์ •ํ•˜๋Š” loss ํ•จ์ˆ˜์ด๋‹ค.

  • $F(G(x)) \approx x$ : input $x$์— ๋Œ€ํ•ด, $G(x)$๋Š” $\hat{y}$๋ฅผ ๋งŒ๋“ค๊ณ , $F(G(x))$๋Š” $\hat{y}$๋ฅผ input์œผ๋กœ ํ•˜์—ฌ $\hat{x}$๋ฅผ ๋งŒ๋“ ๋‹ค. ์ด๋ ‡๊ฒŒ ์ตœ์ข…์ ์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ output์ด ์ดˆ๊ธฐ input $x$์™€ ์œ ์‚ฌํ•ด์ง€๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์ด๋‹ค.

์ด cycle consistency loss์™€ adversarial losses๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ unpaired image-to-image translation์˜ ์ „์ฒด ๋ชฉํ‘œ๋ฅผ ์ •์˜ํ•œ๋‹ค.

Generative Adversarial Networks (GANs)

GANs์ด ์„ฑ๊ณตํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ํ•ต์‹ฌ์ ์ธ ์ด์œ ๋Š”, ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€๊ฐ€ ์‹ค์ œ ์‚ฌ์ง„๊ณผ ๊ตฌ๋ถ„๋˜์ง€ ์•Š๋„๋ก ํ•˜๋Š” adversarial loss ์•„์ด๋””์–ด ๋•๋ถ„์ด๋‹ค.

Neural Style Transfer

Neural Style Transfer๋Š” image-to-image translation์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋˜ ํ•œ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋‹ค๋งŒ, Neural style transfer๋Š” โ€˜๋‘ ์ด๋ฏธ์ง€ ์‚ฌ์ดโ€™์˜ ๋ณ€ํ™˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค๋ฉด, ์ด ์—ฐ๊ตฌ์—์„œ ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์€ โ€˜๋‘ ์ด๋ฏธ์ง€ ์ปฌ๋ ‰์…˜ ์‚ฌ์ดโ€™์˜ ๋Œ€์‘ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜์—ฌ mapping์„ ํ•™์Šตํ•˜์—ฌ ์ด๋ฏธ์ง€ ๋ณ€ํ™˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

Neural style transfer๋Š” ์ฃผ๋กœ ํ•œ ์ด๋ฏธ์ง€์˜ ์Šคํƒ€์ผ์„ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€์— ํ•ฉ์„ฑํ•˜๋Š” ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, CycleGAN์€ ๋‘ ์ด๋ฏธ์ง€ ์ปฌ๋ ‰์…˜ ์‚ฌ์ด์˜ mapping์„ ํ•™์Šตํ•˜๋Š” ํŠน์„ฑ์œผ๋กœ ์ธํ•ด neural style transfer๊ณผ ๊ฐ™์€ single sample transfer methods๋กœ๋Š” ์ˆ˜ํ–‰ํ•˜๊ธฐ ์–ด๋ ค์šด, โ€˜painting์„ photo๋กœ ๋ฐ”๊พธ๋Š” ์ž‘์—…โ€™์ด๋‚˜, โ€˜๊ฐ์ฒด ๋ณ€ํ˜•(object transfiguration)โ€™๊ณผ ๊ฐ™์€ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค.

3. Formulation

image

๋ชจ๋ธ์˜ ๊ถ๊ทน์ ์ธ ํ•™์Šต ๋ชฉํ‘œ๋Š” domain $X$์™€ $Y$์‚ฌ์ด์˜ mapping functions์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

๋ชจ๋ธ์€ mapping ํ•จ์ˆ˜ โ€˜$G$โ€™์™€ โ€˜$F$โ€™๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š”๋ฐ, $G$๋Š” $x_i \in X$๋ฅผ $Y$ ๋„๋ฉ”์ธ์— ๋งคํ•‘ํ•˜๊ณ , $F$๋Š” $y\in y$๋ฅผ $X$ ๋„๋ฉ”์ธ์— ๋งคํ•‘ํ•œ๋‹ค.

๋˜ํ•œ, ๊ธฐ์กด GANs๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ discriminator๊ฐ€ ์กด์žฌํ•˜๋Š”๋ฐ, ์—ฌ๊ธฐ์„œ๋Š” ์‹ค์ œ ์ด๋ฏธ์ง€ $x$์™€ $F$๊ฐ€ ๋งŒ๋“ค์–ด๋‚ธ ์ด๋ฏธ์ง€ $F(y)$๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” discriminator โ€˜$D_X$โ€™์™€ ์ด๋ฏธ์ง€ $y$์™€ $G(x)$๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” โ€˜$D_Y$โ€™ ๋‘ ๊ฐœ๊ฐ€ ์กด์žฌํ•œ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์ด ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋ชฉ์  ํ•จ์ˆ˜(objective)๋กœ loss function โ€˜Adversarial Lossโ€™์™€ โ€˜Cycle Consistency Lossโ€™๊ฐ€ ์žˆ๋‹ค.

3.1 Adversarial Loss

Introduction์—์„œ๋„ ๋งํ–ˆ๋“ฏ, ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•˜๋Š”๋Œ€๋กœ ๋งคํ•‘์ด ํ•™์Šต ๋˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ adversarial losses ๋งŒ์œผ๋กœ๋Š” ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์—†๊ธฐ์—, cycle consistency loss๋ฅผ ๋„์ž…ํ•œ๋‹ค. Cycle consistency๋Š” $x\rightarrow G(x) \rightarrow F(G(x)) \approx x$๊ฐ€ ์„ฑ๋ฆฝํ•˜๋Š” ์ฆ‰, input data $x$๋ฅผ image translationํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์‹œ ๋ฐ˜๋Œ€๋กœ translationํ•˜์˜€์„ ๋•Œ ์›๋ž˜์˜ $x$๋กœ ๋Œ์•„์™€์•ผ ํ•œ๋‹ค.

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $F$์— ๋Œ€ํ•ด $y \rightarrow F(y) \rightarrow G(F(y)) \approx y$๊ฐ€ ์„ฑ๋ฆฝํ•ด์•ผ ํ•œ๋‹ค.

๋”ฐ๋ผ์„œ ์ด๋ฅผ ์œ„ํ•ด cycle consistency loss๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•œ๋‹ค.

$L_{cyc}(G,F)=E_{x\sim p_{data(x)}}[ ย  F(G(x))-x ย  1] + E{y\sim p_{data(y)}}[ ย  G(F(y))-y ย  _1]$

๋‹ค์Œ ์‚ฌ์ง„์„ ๋ณด๋ฉด cycle consistency๊ฐ€ ์ž˜ ํ•™์Šต๋œ ๋ชจ์Šต์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

image

3.3 Full Objective

Adversarial loss์™€ cycle consistency loss๋ฅผ ํ•ฉ์นœ full objective๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

$L(G,F,D_X,D_Y)=L_{GAN}(G,D_Y,X,Y)+L_{GAN}(F,D_X,Y,X)+\lambda L_{cyc}(G,F)$

์—ฌ๊ธฐ์„œ $\lambda$๋Š” adversarial loss์™€ cycle consistency loss ์‚ฌ์ด์˜ ์ƒ๋Œ€์  ์ค‘์š”๋„์— ๋”ฐ๋ผ ์ •ํ•ด์ง„๋‹ค.

์ด ์—ฐ๊ตฌ์—์„œ๋Š” $\lambda = 10$์œผ๋กœ ์ง„ํ–‰ํ•˜์˜€๋‹ค.

์ด ๋ชจ๋ธ์˜ ํ•™์Šต ๋ชฉํ‘œ๋Š” $G^,F^=arg \ \underset{G,F}{min} \ \underset{D_X,D_Y}{max} \ L(G,F,D_X,D_Y)$๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

6. Limitations and Discussion

image

์ด ๋ชจ๋ธ์€ Color๋‚˜ texture์˜ ๋ณ€ํ™”๋Š” ์ž˜ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ์œ„ ์‚ฌ์ง„์ฒ˜๋Ÿผ ๊ฐ•์•„์ง€๋ฅผ ๊ณ ์–‘์ด๋กœ ๋ฐ”๊พธ๋Š” geometricํ•œ ๋ณ€ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ธฐ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋ง๊ณผ ์–ผ๋ฃฉ๋ง์€ ์„œ๋กœ ๋น„์Šทํ•˜์—ฌ ๋ณ€ํ™˜ํ•˜๊ธฐ ์‰ฝ์ง€๋งŒ, ๊ฐœ์™€ ๊ณ ์–‘์ด๋Š” ์ƒ๊ธด ํ˜•ํƒœ๊ฐ€ ํฌ๊ฒŒ ๋‹ฌ๋ผ ๋ณ€ํ™˜ํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

๋˜ํ•œ, ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹์˜ ํŠน์„ฑ์— ์˜ํ•ด ๋ณ€ํ™”์— ์ œ์•ฝ์„ ๋ฐ›๋Š”๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์•ผ์ƒ์˜ ๋ง ๋ฐ์ดํ„ฐ์…‹(๋ง์ด ๋‹จ๋…์œผ๋กœ ์žˆ๋Š” ์ด๋ฏธ์ง€)๊ณผ ์–ผ๋ฃฉ๋ง ๋ฐ์ดํ„ฐ์…‹์„ ๊ฐ€์ง€๊ณ  ํ•™์Šตํ•˜๋ฉด, ๋ง์— ์‚ฌ๋žŒ์ด ํƒ€์žˆ๋Š” ์‚ฌ์ง„์—์„œ horse โ†’ zebra task๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ์—๋Š” ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค.

7. Appendix

์ด ๋…ผ๋ฌธ์˜ section 7์—๋Š” ๊ฐ๊ฐ์˜ ๋ฐ์ดํ„ฐ์…‹์„ ํ•™์Šตํ•  ๋•Œ์˜ ๋””ํ…Œ์ผ๋“ค์ด ์ž˜ ๋‚˜์™€์žˆ๋‹ค. ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•ด๋ณผ ๋•Œ ์ฐธ๊ณ ํ•˜๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค.

์ด ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ๋ชจ๋ธ ๊ตฌํ˜„ ์ฝ”๋“œ์ด๋‹ค.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

https://github.com/junyanz/CycleGAN

Cycle GAN์˜ ๊ฒฐ๊ณผ๋ฌผ๋“ค์„ ๊ฐ์ƒํ•˜๋ฉฐ ๊ธ€์„ ๋งˆ์นœ๋‹ค.

image image image image image image image

Categories:

Updated:

Leave a comment